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We derive the equations governing the dynamics of thin viscous sheets having non-homogeneous

viscosity, via asymptotic expansion methods. We consider distributions of viscosity that are

inhomogeneous in the longitudinal and transverse directions and arbitrary (bulk and surface)

external forces. Two specific problems are solved as an illustration. In a first example, we study the

effects of purely in-plane variations of viscosity, which lead to thickness modulations when the

sheet is stretched or compressed. In a second example, we study a stretched viscous sheet whose

viscosity varies both across thickness and in-plane; in that case, we find that in-plane strain leads to

out-of-plane displacement as the in-plane forces become coupled to transverse ones. VC 2011
American Institute of Physics. [doi:10.1063/1.3602507]

I. INTRODUCTION

In industry, the dynamics of thin viscous sheets is rele-

vant to processes such as drawing, coating, blowing, or

extrusion. In nature, the earth crust can be considered as a

viscous layer floating on the upper mantle when considering

geological timescales. In these practical situations, viscosity

is often inhomogeneous, owing to variations in the composi-

tion of the materials or in temperature. For instance, the vis-

cosity of lava can be modeled with an Arrhenius-like

exponential dependence on temperature1 so that small ther-

mal effects can lead to large variations in viscosity.

Although much theoretical effort has been devoted to

the derivation of equations governing the dynamics of thin

viscous sheets, it seems that inhomogeneities in viscosity

have not been addressed to date. This lack is somehow sur-

prising when recalling lubrication, the theory of thin viscous

films supported by a rigid substrate, where variations in ma-

terial properties were properly considered.1,2 Thermal effects

were also investigated in the context of thin elastic plates:3,4

differential dilation due to inhomogeneous heating can

induce bending of the plate. Here, our aim is to provide a

framework describing how an inhomogeneous, thin viscous

sheet deforms under the action of external forces. In our

illustrations, we assume for simplicity that the viscosity dis-

tribution is fixed, the temperature field or the variable com-

position of the liquid being prescribed. Nevertheless, the

equations for thin viscous sheets derived here can be applied

directly to coupled problems, provided that the mechanical

equations are complemented, e.g., by the equations for ther-

mal diffusion.

The dynamics of thin viscous sheets reveals a number of

interesting phenomena such as draw resonance5 or buckling.

Buckling is an instability that occurs in thin bodies when lon-

gitudinal compression exceeds a well-defined threshold and

makes the body bend out-of-plane. The seminal paper of

Taylor6 prompted a number of studies on the buckling of vis-

cous bodies. For instance, he observed the wrinkling of an

annular floating sheet sheared between two coaxial rotating

cylinders, which was further investigated experimentally and

theoretically.7,8 Other geometries with boundary forcing

include a rectangular floating sheet with one moving edge,9

or thin glass redraw.10 The compression required for buck-

ling can also be induced by body forces, such as gravity, as

in the case of a punctured viscous bubble11,12 or a sheet fall-

ing on a stick.13

Most of the theoretical studies relied on the asymptotic

expansions of the Stokes equations, taking advantage of the

small ratio of thickness to in-plane extension. This leads to

equations describing in-plane flow (averaged over the thick-

ness) and out-of-plane bending of the midsurface of the

sheet. This dimensional reduction makes analytical and nu-

merical investigations considerably easier. The first theoreti-

cal studies were motivated by glass and polymer drawing

and addressed purely extensional flows.14–17 Viscous bend-

ing torques were accounted for by Howell18 for nearly flat

sheets, generalizing approaches on viscous filaments,19,20

while Ribe21 developed a model for sheets of arbitrary shape,

accounting for both stretching and bending. Here we extend

our previous work on nearly flat sheets22 submitted to arbi-

trary external forces by allowing for spatial variations of

viscosity.

We consider a thin, purely viscous sheet. Viscosity can

vary both across the thickness and in the longitudinal direc-

tions. One might wonder whether a dimensionally reduced

model, which essentially sets the transverse dimension to

zero, is able to capture variations of viscosity. It turns out

that this is possible, for arbitrary (transverse and=or longitu-

dinal) inhomogeneities, using a compact set of equations.

These equations not only depend on the thickness-averaged

viscosity, but also on the first moments of the viscosity dis-

tribution across thickness. In Sec. II we start by recalling the

equations of equilibrium for a thin sheet loaded by arbitrary

forces; we then introduce the constitutive equations for a

Newtonian fluid with variable viscosity, leading to a closed

set of partial differential equations. Its unknowns are
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functions of the two in-plane coordinates along the mid-sur-

face of the sheet and no longer of the transverse coordinate.

In Sec. III, we solve two examples illustrating typical behav-

iours associated with inhomogeneous viscosity.

II. MODEL

The equations governing the time evolution of a thin

viscous sheet are derived in two steps. Section II A is con-

cerned with the equations of equilibrium; the derivation fol-

lows standard methods.18,21,22 In Sec. II B we introduce the

constitutive law for the incompressible, viscous fluid, with a

viscosity l depending on space and time. The fluid is

assumed to be Newtonian here. However, it is a simple task

to extend our model to more complex constitutive laws.

Indeed the equations that depend on the constitutive laws are

derived independently of the equations of equilibrium.

Finally, the equations are generalized to 3D configurations in

Sec. II C.

A. Equilibrium

We start by considering a 2D flow geometry, which we

shall generalize to 3D later on. We use Cartesian coordinates

(x, z) such that the transverse direction is along the z axis, the

sheet being aligned with the x axis in its undeformed config-

uration. At any time t, let z¼H(x, t) be the position of center

surface of the sheet and h(x, t) its thickness. All the variables

(including forces) are time-dependent. Still, with the aim to

keep compact notations, dependence on time will most of

the time be implicit. The interfaces are given by the follow-

ing equation:

z6ðxÞ ¼ HðxÞ6 hðxÞ
2
; (1)

where the “þ” is for the upper interface and the “�” for the

lower one. We neglect inertial terms as we consider the limit

of a small Reynolds number Re¼qUL=l. Volume and sur-

face forces are applied on the sheet and are collectively rep-

resented by a vector f (x, z, t): surface forces, such as surface

tension, are taken care of by means of a Dirac contribution to

the volume force f . As a result, surface forces do not appear

in the equations for the equilibrium of the interfaces, but

instead as Dirac weights in the equation of equilibrium in the

bulk.

Let us introduce useful mathematical operators acting

on functions /(x, z) defined in the domain occupied by the

sheet,

½I � /�ðxÞ ¼
ðzþðxÞ

z�ðxÞ
/ðx; zÞ dz; (2a)

½Jq � /�ðxÞ ¼
ðzþðxÞ

z�ðxÞ
ðz� HðxÞÞq /ðx; zÞ dz; (2b)

½A � /�ðx; zÞ ¼
ðz

HðxÞ
/ðx; z0Þ dz0; (2c)

½v � /�ðxÞ ¼
ðzþðxÞ

z�ðxÞ
kvðx; zÞ/ðx; zÞ dz; (2d)

where q is an integer, and the kernel kv(x, z) is defined by

kvðx; zÞ ¼
�1=2 if z < HðxÞ
þ1=2 if z > HðxÞ

�
: (2e)

The operators I and J1 yield the resultant force, and

bending moment from the arbitrary distribution of forces

applied throughout the thickness. Jq, q � 2 stands for higher

order moments. The operator v is only used in the intermedi-

ate steps of the calculation and will be eliminated in favor of

J1. The operator A is required to reconstruct 3D quantities

but does not appear in the final, dimensionally reduced

equations.

Throughout the paper the comma in subscript notation

/,x denotes partial derivatives, here with respect to the vari-

able x. The problem is first made dimensionless as follows.

Longitudinal lengths are rescaled using the typical in-plane

length L, while transverse variables make use of the addi-

tional small parameter �¼ h*=L, h* being the typical value

of the sheet thickness h(x),

x ¼ L x0 z ¼ � L z0 h ¼ � L h0 H ¼ � L H0:

The volumic density of force is rescaled using the quan-

tity l0U=L2, where l0 and U are the typical values of the

dynamic viscosity and in-plane velocity, respectively,

fxðx; zÞ ¼
l0 U

L2
ðf 0x0ðx0; z0Þ þ � � �Þ; (3a)

fzðx; zÞ ¼
l0 U

L2

1

�
f 0zð�1Þðx0; z0Þ þ � f 0z1ðx0; z0Þ þ � � �

� �
: (3b)

Here, fx and fz denote the projections of the force f onto

the x and z directions: f ðx; zÞ ¼ ðfxðx; zÞ; 0; fzðx; zÞÞ for 2D

flows. Note the extra factors � and 1=� used to rescale the

transverse force fz: they are required in order to make the bal-

ance of force in equation (6a) homogeneous with respect to

�. Two orders are formally included in the transverse force:

in general, f 0zð�1Þðx0; z0Þ 6¼ 0, but in the particular case of so-

called moderate transverse forces we have f 0zð�1Þðx0; z0Þ ¼ 0

and the leading order is f 0z1ðx0; z0Þ.
The rescaled Cauchy stress r0 is defined by

rðx; zÞ ¼ l0 U

L
r0ðx0; z0Þ:

Its integral over thickness Nij(x) is called the membrane

stress; its first moment Mij(x) is called the internal bending

moment

NijðxÞ ¼ ½I � rij�ðxÞ; MijðxÞ ¼ ½J1 � rij�ðxÞ: (4)

These are the stress measures appearing in the dimensionally

reduced equations. Their rescaled forms N0ij and M0ij are obvi-

ously defined by

Nij ¼ � l0 U N0ij; Mij ¼ �2 l0 U L M0ij: (5)

For the sake of readability, we shall omit primes in the fol-

lowing: we implicitly deal with rescaled variables every-

where, unless stated otherwise.
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In terms of rescaled variables, the condition for local

equilibrium in the bulk and at the boundaries write

r � rðx; zÞ þ f ðx; zÞ ¼ 0 for z�ðxÞ � z � zþðxÞ; (6a)

rðx; z6ðxÞÞ � n6ðxÞ ¼ 0; (6b)

where the unit normal to either interface n6(x) are chosen

consistently with the conventions used in Figure 1, namely,

n6ðxÞ ¼ ð��z;6x ðxÞ; 0;61Þ.
The equations of equilibrium for the dimensionally

reduced model are obtained by transverse integration of the

local equations (6), as in the work of Howell18 or in a recent

paper by the same authors.22 The resulting equations express

a balance of forces and moments over small slices of fluid;

they are independent of the choice of a particular constitutive

law and remain the same whether the viscosity varies spa-

tially or not. The longitudinal balance of forces writes

Nxx;xðxÞ þ ½I � fx0�ðxÞ ¼ 0: (7)

At dominant order, the transverse balance of force writes

½I � fzð�1Þ�ðxÞ ¼ 0: (8)

In the case of moderate transverse forces, fz(�1)¼ 0 cancels

identically and the above equation is automatically satisfied;

pushing the expansion further, we obtain a transverse bal-

ance of forces that involves the transverse force fz1

Mxx;xxðxÞ þ ðH;xNxxÞ;xðxÞ þ ½J1 � fx0�;xðxÞ
þ ½I � fz1�ðxÞ ¼ 0: (9)

This classical equation couples bending, membrane stress,

and the external forces.

Having written down the equations of equilibrium, we

proceed to derive effective constitutive laws for the mem-

brane stress Nij(x) and the internal moment Mij(x).

B. Constitutive law, incompressibility

Let u(x, z) and w(x, z) be the components of velocity

along the x and z directions, the 2D velocity vector being

uðx; zÞ ¼ ðuðx; zÞ; 0;wðx; zÞÞ, and let p(x, z) be the pressure

and dðx; zÞ be the strain rate, dij¼ (ui,jþ uj,i)=2. The associ-

ated dimensionless quantities are again temporarily denoted

with primes. They read

u ¼ U u0 w ¼ �U w0;

t ¼ L

U
t0 p ¼ l0 U

L
p0 l ¼ l0 l0: (10)

Dropping the prime notation as earlier, we write the constitu-

tive equations for a perfectly viscous, incompressible fluid

(conservation of volume and Stokes’ law) as

r � uðx; zÞ ¼ 0; (11a)

rðx; zÞ ¼ �pðx; zÞ 1þ 2lðx; zÞ dðx; zÞ; (11b)

which hold everywhere in the bulk, that is, for

z�(x)< z< zþ(x).

In addition, we have the following kinematical condition

of continuity at the upper and lower interfaces:

w x; z6ðxÞ; t
� �

¼ ðz6Þ;tðxÞ þ ðz6Þ;xðxÞ uðx; zÞ: (12)

Writing Eq. (11a) in Cartesian coordinates and inserting Eq.

(11b) into the equilibrium (6a), we have, in rescaled variables,

u;xðx; zÞ þ w;zðx; zÞ ¼ 0; (13a)

�2 p;xðx; zÞ ¼ 2ðlðx; zÞ dxiðx; zÞÞ;i þ �2 fx; (13b)

p;zðx; zÞ ¼ 2ðlðx; zÞ dziðx; zÞÞ;i þ � fz: (13c)

Inserting now Eq. (11b) into the condition of equilibrium

(6b) at the edges, we find the following boundary conditions

for the stress:

�2 ð�pþ 2l6 u;xÞ z6
;x ¼ l6 ðu;z þ �2 w;xÞ; (14a)

l6 ðu;z þ �2 w;xÞ z6
;x ¼ �pþ 2l6 w;z; (14b)

where l6(x)¼l (x,z6(x)) denotes the viscosity at the lower

or upper interface. Reading off the dominant terms in Eqs.

(13b) and (14a) by setting �¼ 0, we obtain a differential

equation with respect to z and two associated boundary

conditions

ðlðx; zÞ u;zðx; zÞÞ;z ¼ 0; lðx; z6ðxÞÞ u;zðx; z6ðxÞÞ ¼ 0:

By integration, l(x,z) u,z(x,z)¼ 0 for z�(x) � z � zþ(x). Since

l(x, z)= 0, we find that the in-plane velocity does not

depend on z at dominant order

uðx; zÞ ¼ �uðxÞ: (15)

Here and elsewhere in this paper, we use the bar notation for

quantities that does not depend on z. The kinematics implied

by Eq. (15) is very specific and results from a balance of

stress at dominant order. Equation (15) is known in the case

of uniform viscosity, see, for instance, Ref. 18 and has been

extended here to arbitrary viscosity distributions. Note that

in the present work, the only assumption regarding the vis-

cosity distribution is that it is independent of �, i.e., we sim-

ply assume that the contrast of viscosity remains finite.

Using the expression (15) for u(x, z), we can integrate

the incompressibility condition (13a) with respect to z, which

yields

wðx; zÞ ¼ �wðxÞ � ðz� HðxÞÞ �u;xðxÞ: (16)

The constant of integration �wðxÞ is a function of x (and im-

plicitly of t) but not of z; it can be found by inserting theFIG. 1. Two dimensional sheet of viscous fluid.
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expression of w above into the kinematical continuity condi-

tion (12). The average of the conditions for z¼ zþ(x) and

z¼ z�(x) yields

�wðxÞ ¼ H;tðxÞ þ �uðxÞH;xðxÞ;

while the difference yields Trouton’s condition for mass

conservation

h;tðxÞ þ ð�uðxÞ hðxÞÞ;x ¼ 0 ðTroutonÞ: (17)

We now consider the equilibrium equation (13c) projected

along the z direction at dominant order

p;zðx; zÞ ¼ �2l;zðx; zÞ �u;xðxÞ þ fzð�1Þ:

The general solution of this differential equation for p reads

pðx; zÞ ¼ � 2 ðlðx; zÞ � lðx;HðxÞÞ Þ �u;xðxÞ
þ ½A � fzð�1Þ�ðx; zÞ þ p̂ðxÞ; (18)

where we have used the transverse integration operator A
defined in Eq. (2c). The constant of integration p̂ðxÞ can be

found from the stress continuity condition at the interfaces

(14b) which read, at dominant order,

pðx; z6ðxÞÞ ¼ �2 lðx; z6ðxÞÞ �u;xðxÞ: (19)

Combining Eqs. (18) and (19), we can eliminate p̂. This

yields the pressure p(x, z) at dominant order in closed form

pðx; zÞ ¼ �2lðx; zÞ �u;xðxÞ þ ½A � fzð�1Þ�ðx; zÞ � ½v � fzð�1Þ�ðxÞ;
(20)

where we have introduced the operator v defined in Eq. (2d)

by using the identity ½v � /�ðxÞ ¼ ð½A � /�ðx; z�ðxÞÞ þ ½A � /�
ðx; zþðxÞÞÞ=2.

The constitutive law (11b) reads rxx(x,z)¼�p(x,z)

þ 2l(x,z)dxx(x,z), where dxxðx; zÞ ¼ �u;xðxÞ at dominant order.

Inserting the expression (20) for p, we have

rxxðx; zÞ ¼ 4 lðx; zÞ �u;xðxÞ � ½A � fzð�1Þ�ðx; zÞ þ ½v � fzð�1Þ�ðxÞ:
(21)

This expression can be turned into effective constitutive laws

for the membrane stress Nij and the internal moment Mij

defined in Eq. (4). Let us first introduce the average viscosity

�lðxÞ on a transverse slice, the differential viscosity ~lðx; zÞ
and the first moments of viscosity l†

1ðxÞ and l†
2ðxÞ, which are

defined by

�lðxÞ ¼ ½I � l�ðxÞ
hðxÞ ; (22a)

~lðx; zÞ ¼ lðx; zÞ � �lðxÞ; (22b)

l†
1ðxÞ ¼ ½J1 � ~l�ðxÞ ¼ ½J1 � l�ðxÞ; (22c)

l†
2ðxÞ ¼ ½J2 � ~l�ðxÞ ¼ ½J2 � l�ðxÞ �

h3ðxÞ
12

�lðxÞ: (22d)

Applying the integral and first-moment operators I and J1 to

both sides of Eq. (21), we find

NxxðxÞ ¼ 4hðxÞ �lðxÞ �u;xðxÞþ½J1 � fzð�1Þ�ðxÞ
ðTroutonÞ; (23)

MxxðxÞ ¼ 4l†
1ðxÞ �u;xðxÞ þ

1

2
½J2 � fzð�1Þ�ðxÞ

ðTroutonÞ:
(24)

The last terms in Eqs. (23) and (24), proportional to the

transverse force fz(�1), have been worked from Eq. (21) as

follows, with /¼ fz(�1):

I � ð�½A � /� þ ½v � /�Þ ¼ �½I � ½A � /�� þ h ½v � /� (25a)

¼ �ð�½J1 � /� þ h ½v � /�Þ þ h ½v � /�
(25b)

¼ ½J1 � /�; (25c)

and

J1 � ð�½A � /� þ ½v � /�Þ ¼ �½J1 � ½A � /�� (26a)

¼ � h2

8
½I � /� þ 1

2
½J2 � /� (26b)

¼ 1

2
½J2 � /�: (26c)

Here, the equalities in Eqs. (25a) and (26a) make use of the

fact that [v �/] is independent of z; the identities (25b) and

(26b) are obtained by permutation of the integrals associated

with each one of the integral operators in [I � [A �/]] or [J1 �
[A �/]]; Eq. (26c) follows from the equilibrium condition (8)

with /¼ fz(�1).

Derivation of these constitutive laws (23) and (24) is

one of the main contributions of the present paper. These

laws are similar to those obtained in the case of uniform vis-

cosity,18,21,22 with two important changes: the stretching

modulus ð4 �l hÞ appearing in the definition of the membrane

strain Nxx makes use of the average viscosity �l in place of

the uniform viscosity l; more importantly, a new term has

appeared in the expression of Mxx (note that for homogeneous

viscosity, l†
1 ¼ 0). This new term 4l†

1�u;x couples the in-plane

and transverse deformations, as an in-plane stretching can

induce a non-zero bending moment. This effect is discussed in

detail in Sec. III B. A similar phenomenon is known as hemi-

tropy in the context of elastic rods.23 It is remarkable that

dimensional reduction is fully tractable for an arbitrary viscos-

ity distribution.

In Eq. (10), we have used the Trouton scalings for time

t� L=U and transverse velocity w¼ �U. In the rest of this

section, we consider alternative scaling assumptions,

namely, t� �2L=U and w¼ ��1U, which amounts to look at

deformations on a shorter time scale. This defines the so-

called BNT model following the initials of the authors

(Buckmaster, Nachman, Ting) of Refs. 19 and 20. A detailed

comparison of the Trouton and BNT models can be found in

Refs. 18 and 22. One of the main differences is that the BNT

model is able to capture the bending rigidity of the sheet. A

consequence of this scaling is that the expression (15) for the

in-plane velocity u(x, z) and (16) for the transverse velocity

w(x, z) are modified into
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uðx; zÞ ¼ �uðxÞ � H;xtðxÞ ðz� HðxÞÞ;
wðx; zÞ ¼ �wðxÞ � H;ztðxÞ ðz� HðxÞÞ:

The second terms in the right-hand sides are new; they make

the velocity depend explicitly on z and represent the kine-

matics of bending.

Repeating the same calculation as earlier, we find that

the stress in Eq. (21) is modified as

rxxðx; zÞ ¼ 4lðx; zÞ �u;xðxÞ
� 4lðx; zÞðH;xtðxÞðz� HðxÞÞÞ;x
� ½A � fzð�1Þ�ðx; zÞ þ ½v � fzð�1Þ�ðxÞ: (27)

As a consequence the constitutive laws read

NxxðxÞ ¼ 4�lðxÞ hðxÞ ð�u;xðxÞ þ H;xtðxÞH;xðxÞÞ
� 4 l†

1ðxÞH;xxt þ ½J1 � fzð�1Þ�ðxÞ ðBNTÞ; (28)

and

MxxðxÞ ¼ 4l†
1ðxÞ ð�u;xðxÞ þ H;xtðxÞH;xðxÞÞ

� 4
h3ðxÞ

12
�lðxÞ þ l†

2ðxÞ
� �

H;xxt

þ 1

2
½J2 � fzð�1Þ�ðxÞ ðBNTÞ: (29)

Here, we have used for the first time the second moment l†
2

of the transverse viscosity distribution, defined by anticipa-

tion in Eq. (22d). This second moment is irrelevant in Trou-

ton case but does appear in the BNT case. These expressions

are similar to those for homogeneous viscosity,22 with new

terms proportional to l†
1 and l†

2, accounting for inhomogene-

ities of viscosity.

The conservation of mass implies conservation of thick-

ness over the short time scale of the BNT model,

h;tðxÞ ¼ 0 ðBNTÞ: (30)

C. Generalization to 3D

Here, we relax the assumption of invariance along the y
direction, and generalize the above set of equations to 3D

flows. The equations can be derived exactly along the same

lines as before although the calculations are more involved.

Therefore, we omit the details of the derivation and simply

list the final equations.

The in-plane coordinates are now x and y, the direction

perpendicular to the flat reference configuration of the sheet

being still along z. The two in-plane projections of the

applied force are noted fx and fy. The in-plane projections of

velocity are noted ux and uy: the quantity noted u in our 2D

analysis is now written ux.

In addition, we use a practical notation to condense the

Trouton and BNT models into a single set of equations: we

introduce an integer index m whose value is 0 in Trouton

case and 1 in BNT case. Terms appearing only in Trouton

model are taken care of by a prefactor (1�m) and those

appearing only in BNT model by a prefactor (m).

We introduce Greek indices a, b, and c which by con-

vention run over in-plane directions, i.e., can only take on

the values x or y. We use Einstein’s summation convention:

when an index is repeated on the same side of an equal sign,

an implicit summation is implied.

In this section, we deal exclusively with effective quan-

tities that are defined along the mid-surface and no longer

depend on the transverse coordinate. Since all functions are

functions of (x, y, t) but do not of z, we shall systematically

omit their arguments to improve readability.

The kinematical analysis carries over to 3D without any

change. The in-plane velocity ua(x, y, z) can be reconstructed

from its value on the center surface �uaðx; yÞ by

uaðx; y; zÞ ¼ �uaðx; yÞ � H;atðx; yÞ ðz� Hðx; yÞÞ: (31)

The pressure can reconstructed by the constitutive equation

for rzz combined with the incompressibility condition,

w,z¼�(ua,a). This yields an equation similar to Eq. (20)

pðx; y; zÞ ¼ �2l �ua;a þ ½A � fzð�1Þ� � ½v � fzð�1Þ�:

Inserting this into the constitutive equation for the in-plane

stress rab, we have

rabðx; y; zÞ ¼ 2 l
ua;b þ ub;a

2
þ uc;c dab

� �

þ dab �½A � fzð�1Þ� þ ½v � fzð�1Þ�
� �

; (32)

which extends Eq. (21) to 3D. Here, dab stands for the Kro-

necker symbol, dxx¼ dyy¼ 1, and dxy¼ dyx¼ 0.

The equations for mass conservation (17) in Trouton

case and (30) in BNT case have an obvious extension

to 3D

h;t þ ð1� mÞ ðh �uaÞ;a ¼ 0: (33)

The in-plane force balance (7) takes the following classical

form:

Nab;b þ ½I � fa0� ¼ 0; (34)

where the first term is the net membrane stress and the sec-

ond term [I � fa0](x, y) is the resultant of the applied force

along the direction a, both being measured per unit area of

the sheet.

The transverse force balance at leading order (8) is

extended in 3D to

½I � fzð�1Þ� ¼ 0; (35a)

and the transverse force balance at next order (9) becomes

Mab;ab þ ðH;a NabÞ;b þ ½J1 � fa0�;a þ ½I � fz1� ¼ 0: (35b)

The constitutive law for membrane strain is given by appli-

cation of the operator I on the 3D stress in Eq. (32)

Nab ¼ 2 �l h nab � 4m l†
1

H;abt þ H;cct dab

2

þ dab ½J1 � fzð�1Þ�; (36)
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where the intermediate quantity nab is a measure of the rate

of stretching defined by

nab ¼
�ua;b þ �ub;a

2
þ �uc;c dab

þ m
H;at H;b þ H;bt H;a

2
þ H;ct H;c dab

� �
: (37)

Equation (36) generalizes both Eq. (23) in Trouton case

(m¼ 0) and Eq. (28) in BNT case (m¼ 1).

Applying the operator J1 on the 3D stress in Eq. (32),

we find the constitutive law for bending,

Mab ¼ 2 l†
1 nab � 4m

h3

12
�lþ l†

2

� �
H;abt þ H;cct dab

2

þ dab

2
½J2 � fzð�1Þ�: (38)

This equation generalizes both Eq. (24) in Trouton case and

Eq. (29) in BNT case.

All the equations of the present section boil down to

those given in Secs. II A and II B in the particular case of 2D

flow. This can be checked by taking uy¼ 0 and @y¼ 0 in

Eqs. (33)–(38).

III. TWO EXAMPLES

A. Necking induced by in-plane variations of viscosity

We consider a thin viscous sheet in a 2D geometry,

undergoing uniaxial elongation under the action of a pre-

scribed lateral stretching force N0
xx > 0. The solution is also

valid in the compressive case N0
xx < 0 but is then unstable

with respect to buckling. Here x denotes the direction of

application of the force. We consider the Trouton model in

2D, which is appropriate in the absence of buckling. Body

and surface forces are set to zero.

We study the effect of in-plane inhomogeneities of vis-

cosity on the flow. We describe a phenomenon of viscous

necking, whereby deformation in a stretched sheet concen-

trates in the regions with lowest viscosity. It is similar to the

necking of bars described by several authors in the context

of plastic flows using non-Newtonian constitutive laws, see,

e.g., Ref. 24. Here, we solve the case of a Newtonian viscous

bar with arbitrarily large initial imperfections. This case has

not yet been considered to the best of our knowledge and dif-

fers from the rupture of thin films induced by, e.g., Van der

Waals forces.25

To this end, we assume that the viscosity profile is ho-

mogeneous through thickness, with some arbitrary depend-

ence on the longitudinal variable x

lðx; y; tÞ ¼ l̂ðx; tÞ: (39)

This viscosity is assumed to be passively advected by the

flow. This happens, for instance, when viscosity is a function

of temperature only and radiation and thermal diffusion can

be neglected; then temperature is passively advected and so

is viscosity. Similarly, this could happen when viscosity is a

function of chemical composition of the liquid and diffusion

can be neglected.

Dl̂ðx; tÞ
Dt

¼ 0: (40)

Here D=Dt denotes the convective derivative,

D

Dt
¼ @

@t
þ �uðx; tÞ @

@x
: (41)

Note that the convective derivative depends implicitly on the

in-plane velocity �uðx; tÞ which is an unknown of the problem.

Therefore, Eq. (40) will only be used later to reconstruct the

viscosity l̂ðx; tÞ from the initial profile l̂ðx; 0Þ, once the ve-

locity �uðx; tÞ has been determined.

In the absence of body and surface force, Eq. (7) for the

in-plane equilibrium yields Nxx,x¼ 0. The membrane stress

is, therefore, uniform, and its value is set by the loading

applied at the boundaries,

Nxxðx; tÞ ¼ N0
xx: (42)

With l†
1ðxÞ ¼ 0, the constitutive law (24) yields Mxx(x,

t)¼ 0. Inserting this and the above value of Nxx into the

transverse equilibrium (9), we find that the midsurface

remains undeformed,

Hðx; tÞ ¼ 0: (43)

When combined with the constitutive law (23), Eq. (42) pro-

vides a relation between the two unknowns, the thickness

h(x, t) and the midplane velocity �uðx; tÞ,

hðx; tÞ �u;xðx; tÞ ¼
N0

xx

4 l̂ðx; tÞ : (44)

The equation for mass conservation (17) provides a second

equation. We rewrite it by expanding the space derivative,

ðh �uÞ;x ¼ h �u;x þ h;x �u, and identifying the convective deriva-

tive in the resulting expression

Dhðx; tÞ
Dt

þ �u;xðx; tÞ hðx; tÞ ¼ 0: (45)

Elimination of �u;x from Eqs. (44) and (45) yields

Dhðx; tÞ
Dt

¼ � N0
xx

4 l̂ðx; tÞ : (46)

By Eq. (40), the viscosity is passively advected by the flow

and so is the right-hand side of Eq. (46) above too. As a

result, this partial differential equation can be turned into an

ordinary differential equation with respect to time when

expressed in terms of the Lagrangian coordinate X

@hðX; tÞ
@t

¼ � N0
xx

4 l̂ðX; 0Þ :

Here, X marks a cross-section whose physical coordinates

was x¼X at time t¼ 0. This equation can readily be inte-

grated into

hðX; tÞ ¼ hðX; 0Þ � N0
xx t

4 l̂ðX; 0Þ : (47)
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Break-up takes place in a finite time t* and at position X*

corresponding to h(X*, t*)¼ 0, namely,

t	 ¼ 4 minXðl̂ðX; 0Þ hðX; 0ÞÞ
N0

xx

: (48)

This break-up involves an infinite deformation, as will be

seen below. As a result, the break-up occurs in infinite time

when velocities are imposed at the boundary instead of

forces.

There remains to solve for the velocity �uðx; tÞ. To do so,

we consider the Lagrangian strain e(X, t)¼ @x(X, t)=@X,

where x(X, t) denotes the actual position of particle X at time

t. The conservation of volume (45) can be integrated into

eðX; tÞ ¼ hðX; 0Þ
hðX; tÞ ; (49)

a quantity which is known in terms of the initial viscosity

and height distribution using Eq. (47) and which diverges

when the thickness vanishes. The transformation x(X, t) can

then be found by integration,

xðX; tÞ ¼
ð

eðX; tÞ dX;

up to a constant of integration associated with an arbitrary

rigid-body translation at each time t. Lagrangian velocity can

be computed with �uðX; tÞ ¼ @xðX; tÞ=@t. Finally, velocity,

height, and viscosity distributions can be found in Eulerian

variables by changing the variable X for x(X, t), and the prob-

lem is solved.

This solution is illustrated in Figure 2 with an initial dis-

tribution of viscosity

l̂ðx; 0Þ ¼ 2� 1

1þ x2
; (50)

a uniform initial thickness h(x,0)¼ 1 and a unit stretching

force N0
xx ¼ 1.

B. Floating sheet with in-plane variations of
transverse gradient of viscosity

As a more complete illustration, we consider a sheet

floating on a dense fluid in hydrostatic equilibrium. We

allow for variations of viscosity across the thickness of the

sheet. They can be due to inhomogeneities in the chemical

composition or temperature, such inhomogeneities being rel-

evant to both industrial or geological processes. The den-

sities of the sheet and the bath are denoted q1 and q2,

respectively, with q1<q2. The external forces on the sheet

are listed as follows. Gravity is a volume force with magni-

tude q1g. Surface forces caused by surface tension cþ and c�

are considered at the upper and lower interfaces, respec-

tively. A second type of surface force is applied at the lower

interface, namely, the hydrostatic pressure from the bath,

p¼ q2g(Hb� z�), where Hb is the height of the free surface of

the bath in the absence of the sheet. Finally the sheet is

strained by applying forces at the remote lateral boundaries.

We again assume a 2D geometry but now make use of the

BNT model to investigate the bending of the sheet. Fluctua-

tions of viscosity are assumed to be small, as discussed below.

1. Governing Equations

In order to write compact expression for the forces, we

use the notations dþ(x, z, t)¼ d(z� zþ(x, t)) and d�(x, z,

t)¼ d(z� z�(x, z, t)) for the Dirac distributions centered at

the lower and upper interface, respectively. At order �, the

curvature of the lower and upper interfaces reads

j6ðx; tÞ ¼ @2

@x2
Hðx; tÞ6 hðx; tÞ

2

� �
:

External forces are all counted as volume forces

fzð�1Þ ¼ 0; (51a)

fz1 ¼� q1 gþ dþðx; z; tÞ cþ jþðx; tÞ

þ d�ðx; z; tÞ c� j�ðx; tÞ þ q2 g Hb � H þ h

2

� �	 

; (51b)

fx0 ¼ 0; (51c)

fy0 ¼ 0; (51d)

where surface forces have been incorporated as Dirac

distributions.

We use the equation of Secs. II A and II B for the 2D ge-

ometry. For this particular choice of applied forces, the equa-

tions for mass conservation (30) and for in-plane and

transverse force balance (7) and (9) read

h;tðxÞ ¼ 0; (52)

Nxx;xðxÞ ¼ 0; (53)

Mxx;xxðxÞ þ NxxðxÞH;xxðxÞ þ ½I � fz1�ðxÞ ¼ 0; (54)

while the constitutive laws (28) and (29) read

NxxðxÞ ¼ 4 �lðxÞ hðxÞ ð�u;xðxÞ þ H;xtðxÞH;xðxÞÞ
� 4 l†

1ðxÞH;xxtðxÞ (55)

FIG. 2. (Color online) Stretching of a viscous bar with inhomogeneous ini-

tial viscosity defined by Eq. (50). Necking is observed in the region with

lowest viscosity, followed by break-up in finite time t*¼ 4 in a force-con-

trolled experiment.
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and

MxxðxÞ ¼ 4 l†
1ðxÞ ð�u;xðxÞ þ H;xtðxÞH;xðxÞÞ

� 4
h3ðxÞ

12
�lðxÞ þ l†

2ðxÞ
� �

H;xxtðxÞ: (56)

The thickness-averaged viscosity �lðxÞ, the differential vis-

cosity ~lðx; zÞ ¼ lðx; zÞ � �lðxÞ, and the moments l†
1ðxÞ and

l†
2ðxÞ have all been defined in Eq. (22).

As we only aim at exhibiting the phenomena induced by

spatial variations in viscosity, we further simplify the

reduced constitutive laws (55) and (56) for small fluctuations

in viscosity ~l	 
 l	ð Þ and small out-of-plane displacement

H	 
 h	 � z	ð Þ. Here the star notation /* stands for the

order of magnitude of /. Note that these limits are formally

independent of the expansion in powers of �. We will check

hereafter that these limits are consistent with the conditions

of validity of Eqs. (55) and (56), which were obtained using

the BNT scaling. Let us first compare the orders of magni-

tude of the various terms in the equations above and identify

those that become negligible fo small ~l	 and small H*. The

three terms of the stress resultant Nxx(x) in Eq. (55) scale,

respectively, like

�l	 h	 u	

L	
;

�l	 h	 H	2

L	2 t	
;

~l	 h	2 H	

L	2 t	
: (57)

After expanding the right-hand side, the four terms defining

the stress moment Mxx(x) in Eq. (56) scale like

~l	 h	2 u	

L	
;

~l	 h	2 H	2

L	2 t	
;

�l	 h	3 H	

L	2 t	
;

~l	 h	3 H	

L	2 t	
: (58)

Our assumption of small ~l and H is expressed by

~l	

l	

 1;

H	 h	

L	 t	 u	

 1 and

H	2

L	 t	 u	

 1: (59)

In the previous scaling estimates, we retain only the leading

terms, namely, Nxx ¼ 4 �l h �u;x and Mxx ¼ 4l†
1 �u;x � �l

h3=3 H;xxt. Inserting these expressions into the balances of

forces (53) and (54) and using the specific form (51) of the

forces, we have

ð4 �lðxÞ hðxÞ �u;xðxÞÞ;x ¼ 0 (60)

and

(4 l1† (x) �u;xðxÞ �
�lðxÞ hðxÞ3

3
H;xxtðxÞÞ;xx

þ ð4 �lðxÞ hðxÞ �u;xðxÞÞH;xxðxÞ

� q1 g hðxÞ þ q2 g Hb � HðxÞ þ hðxÞ
2

� �

þ cþ jþðxÞ þ c� j�ðxÞ ¼ 0: (61)

Together with Eq. (52) for mass conservation, which remains

unchanged, these equations control the dynamics of the float-

ing sheet when viscosity fluctuations and out-of-plane dis-

placements are small. We note that for the conditions (59) to

be met, t* has to be such as

t	 � H	 h	

L	 u	
; (62)

which is consistent with the BNT scaling for time,

t	 � �2 ðx	=�u	Þ ¼ ðz	=x	Þ2 ðx	=�u	Þ, as long as H	 
 h	 � z	.

2. Solution

By Eq. (52), the thickness h(x, t) is passively advected

in time in the BNT model. We further assume that the thick-

ness is initially homogeneous. Then, its value remains con-

stant and uniform, h(x, t)¼ h0.

Typical effects associated with in-plane variations

of �lðx; tÞ have been illustrated in the previous section. Here,

the average viscosity �lðx; tÞ is assumed to be uniform in

space

�lðx; tÞ ¼ l0: (63)

Its first moment l†
1ðx; tÞ is left unspecified for the moment—

a harmonic dependence on x will be assumed later.

When the average viscosity �lðx; tÞ ¼ l0 is uniform, the

in-plane equilibrium (60) yields, together with the boundary

condition with a prescribed tension N0
xx or a prescribed strain

rate s

4 l0 h0 �u;xðx; tÞ ¼ N0
xx ¼ 4 l0 h0 s: (64)

Solving for �u;x and inserting the result into Eq. (61), we have

� l0 h3
0

3
H;x4tðx; tÞ þ ðN0

xx þ CÞH;xxðx; tÞ

� q2 gðHðx; tÞ � H0Þ ¼ �
N0

xx

h0

l†
1;xxðx; tÞ

l0

; (65)

where C¼ (cþþ c�), and H0 denotes the equilibrium posi-

tion of the midsurface resulting from buoyancy for a flat pro-

file and in the absence of viscosity variations, as obtained by

setting l†
1 ¼ 0, H;x4t ¼ 0 and H,xx¼ 0 in Eq. (61)

H0 ¼ Hb þ 1

2
� q1

q2

� �
h0: (66)

Equation (65) is a linear equation for (H�H0), the inhomo-

geneity l†
1 in the right-hand side playing the role of a source

term. Note that we are not studying the linear stability of the

sheet here but instead the linearized response to a small per-

turbation, proportional to l†
1. By linearity, we can use Fou-

rier transform and study separately the response to each

Fourier mode of l†
1ðx; tÞ in Eq. (65). Let us consider a partic-

ular Fourier mode with wavenumber k,

l†
1ðx; tÞ ¼ l1

h3
0

12
cosðk xÞ; (67)

and the deformation induced in the sheet, whose amplitude is

denoted A(t),

Hðx; tÞ ¼ H0 þ AðtÞ cosðk xÞ: (68)

Note that we neglected the time-dependence of the wave-

number k: physically, this wavenumber evolves with time as
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the crests and valleys of the midsurface are advected by the

in-plane velocity �u, but this happens on a time scale

tadv � x	=�u	 much longer than the BNT time scale

t� �2(x*=u*) where out-of-plane deformations take place.

The factor h3
0=12 has been included in Eq. (67) purely

by convention. It is motivated by the fact that this distribu-

tion of l†
1ðx; tÞ is achieved by the following particular distri-

bution of viscosity, which is linear with respect to z and

harmonic with respect to x:

lðx; tÞ ¼ l0 þ l1 cosðk xÞ ðz� Hðx; tÞÞ: (69)

Inserting the pure Fourier modes (67) and (68) into Eq. (65),

we find a differential equation for the evolution of the

amplitude,

� l0 h3
0

3
k4 A;tðtÞ � ½ðN0

xx þ CÞ k2 þ q2 g�AðtÞ

¼ k2 N0
xx h2

0

12

l1

l0

: (70)

The equation is rewritten as

A;t ¼
1

s
ðA� A0Þ; (71)

where the amplitude A0 is defined by

A0 ¼ �
1
3

s h3
0

4 l0 h0 sþ Cþ q2 g

k2

l1 (72)

and the growth rate 1=s by

1

s
¼ � 3

l0 h3
0 k2

4 l0 h0 sþ Cþ q2 g

k2

� �
: (73)

In Eq. (72), the amplitude A0 describes a stationary solution

of the equations, A(t)¼A0, corresponding to undulations

with constant amplitude under the constant in-plane strain

rate s ¼ N0
xx= l0h0ð Þ applied at the remote boundaries. A

sheet with inhomogeneous viscosity becomes undulated

when submitted to an in-plane flow.

This shape, visualized in Figure 3, can be seen as a per-

turbation of the flat state H(x, t)¼H0 caused by small inho-

mogeneities of viscosity (69), which couple in-plane flow

with out-of-plane bending. More explicitly in Eq. (72), the

amplitude A0 is seen to result from the balance of a driving

force in the numerator and of the mitigating effect of stretch-

ing, surface tension, and buoyancy in the denominator. This

driving force arises from the coupling of in-plane extension

(or contraction) combined with the transverse gradient of

viscosity. This coupling between in-plane extension and out-

of-plane deformation is a consequence of the presence of

transverse gradients of viscosity. A similar effect is known

as hemitropy in the context of elastic rods.23

If we start from a perfectly flat configuration, H(x, 0)

¼ 0, we have the initial condition A(0)¼ 0. Then the solution

of Eq. (71) is

AðtÞ ¼ A0 ð1� et=sÞ: (74)

The stability of the steady solution A¼A0 is governed by the

sign of the growth rate 1=s, as shown in Figure 4. It is unsta-

ble for 1=s> 0 and stable for 1=s< 0. By Eq. (73), the sign

of the growth rate is fixed by the numerator

[�(4l0h0sþCþq2g=k2)]. The quantity s reflects the struc-

ture of the left-hand side of Eq. (70) and does not depend on

the non-homogeneous term in the right-hand side. As a

result, the stability of the undulating solution (72) is identical

to that of the flat solution H(x, t)¼ 0 without imperfection. A

detailed analysis of buckling in the perfect case, including

saturation by non-linear effects has been presented else-

where.22 The unstable case 1=s> 0, i.e., (4l0h0sþCþ
q2g=k2)< 0 corresponds to an imposed compression

N0
xx ¼ 4l0h0s < 0

� �
that is vigorous enough to overcome the

stabilizing effects of surface tension (C> 0) and buoyancy at

long wavelengths (q2g=k2> 0). In the stable case 1=s< 0,

the shape converges to the stationary solution discussed

above and shown in Figure 3. Viscosity fluctuations can then

be seen as a source of undulations; in this case, a sheet with

perfectly homogeneous viscosity would remain flat, being

stable with respect to buckling.

FIG. 3. (Color online) Non-flat stationary solution with (a) applied stretch-

ing or (b) applied compression. Transverse inhomogeneities of viscosity

cause the planar solution H(x, t)¼H0 to bend by a small amplitude A0 given

by Eq. (72). Note that the regions of maximal viscosity are brought towards

the center of the sheet in the case of extension, and pushed away from it in

the case of compression.

FIG. 4. Time evolution of amplitude in three different regimes, depending

on the stress Nxx¼ 4l0h0s or the strain rate s applied.

063103-9 Thin viscous sheets with inhomogeneous viscosity Phys. Fluids 23, 063103 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



IV. CONCLUSION

In this article, we studied nearly flat thin viscous sheets

with an inhomogeneous distribution of viscosity. Asymptotic

expansions led us to a dimensionally reduced model that

describes the dynamics of the mid-surface, the thickness, and

the in-plane velocity averaged over the thickness. This

model incorporates any type of external force. Inhomogene-

ities are accounted for through the average of viscosity with

respect to the transverse variable and through its first and

second moments. This allowed us to unravel a novel cou-

pling between in-plane strain and out-of-plane bending,

induced by viscosity variations. We applied this model to

two illustrative geometries. In the first one, we described the

necking of a stretched sheet occurring in regions of lower

viscosity. The second geometry illustrates our main contribu-

tion. In the presence of longitudinal variations of the first

moment of viscosity, in-plane loading generates undulations

of the sheet. Thus material inhomogeneities are imprinted on

the three-dimensional shape of the sheet. Our formalism can

easily be extended to non-Newtonian constitutive laws,

opening the way to various applications.
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11G. Debrégeas, P. G. de Gennes, and F. Brochard-Wyart, “The life and

death of “bare” viscous bubbles,” Science 279, 1704 (1998).
12R. D. Silveira, S. Chaı̈eb, and L. Mahadevan, “Rippling instability of a

collapsing bubble,” Science 287, 1468 (2000).
13A. Boudaoud and S. Chaı̈eb, “Singular thin viscous sheet,” Phys. Rev. E

64, 050601 (2001).
14J. R. A. Pearson and C. J. S. Petrie, “The flow of a tubular film. Part 1.

Formal mathematical representation,” J. Fluid Mech. 40, 1 (1970a).
15J. R. A. Pearson and C. J. S. Petrie, “The flow of a tubular film. Part 2.

Interpretation of the model and discussion of solutions,” J. Fluid Mech. 42,

609 (1970b).
16A. L. Yarin, P. Gospodinov, and V. I. Roussinov, “Stability loss and sensi-

tivity in hollow fiber drawing,” Phys. Fluids 6, 1454 (1994).
17B. W. van de Fliert, P. D. Howell, and J. R. Ockendon, “Pressure-driven

flow of a thin viscous sheet,” J. Fluid Mech. 292, 359 (1995).
18P. D. Howell, “Models for thin viscous sheets,” Eur. J. Appl. Math. 7, 321

(1996).
19J. D. Buckmaster, A. Nachman, and L. Ting, “The buckling and stretching

of a viscida,” J. Fluid Mech. 69, 1 (1975).
20J. D. Buckmaster and A. Nachman, “The buckling and stretching of a vis-

cida II. Effects of surface tension,” Q. J. Mech. Appl. Math. 31, 157

(1978).
21N. M. Ribe, “A general theory for the dynamics of thin viscous sheets,” J.

Fluid Mech. 457, 255 (2002).
22G. Pfingstag, B. Audoly, and A. Boudaoud, “Linear and non-linear stabil-

ity of floating viscous sheets,” J. Fluid Mech. in press (2011).
23M. L. Smith and T. J. Healey, “Predicting the onset of dna supercoiling

using a non-linear hemitropic elastic rod,” Int. J. Non-Linear Mech. 43,

1020 (2008).
24J. W. Hutchinson and K. W. Neale, “Influence of strain-rate sensitivity on

necking under uniaxial tension,” Acta Metall. 25, 839 (1977).
25T. Erneux and S. H. Davis, “Nonlinear rupture of free films,” Phys. Fluids

A: Fluid Dyn. 5, 1117 (1993).

063103-10 Pfingstag, Audoly, and Boudaoud Phys. Fluids 23, 063103 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

http://dx.doi.org/10.1103/RevModPhys.81.1131
http://dx.doi.org/10.1103/RevModPhys.69.931
http://dx.doi.org/10.1080/01495730500257482
http://dx.doi.org/10.1063/1.863241
http://dx.doi.org/10.1017/S0022112088002502
http://dx.doi.org/10.1115/1.3242408
http://dx.doi.org/10.1063/1.3286434
http://dx.doi.org/10.1126/science.279.5357.1704
http://dx.doi.org/10.1126/science.287.5457.1468
http://dx.doi.org/10.1103/PhysRevE.64.050601
http://dx.doi.org/10.1017/S0022112070000010
http://dx.doi.org/10.1017/S0022112070001507
http://dx.doi.org/10.1063/1.868260
http://dx.doi.org/10.1017/S002211209500156X
http://dx.doi.org/10.1017/S0956792500002400
http://dx.doi.org/10.1017/S0022112075001279
http://dx.doi.org/10.1093/qjmam/31.2.157
http://dx.doi.org/10.1017/S0022112001007649
http://dx.doi.org/10.1017/S0022112001007649
http://dx.doi.org/10.1016/j.ijnonlinmec.2008.07.001
http://dx.doi.org/10.1016/0001-6160(77)90168-7
http://dx.doi.org/10.1063/1.858597
http://dx.doi.org/10.1063/1.858597

	s1
	s2
	E1
	E2a
	E2b
	E2c
	E2d
	E2e
	E3a
	E3b
	s2A
	E4
	E5
	E6a
	E6b
	E7
	E8
	E9
	E10
	E11a
	E11b
	E12
	E13a
	E13b
	E13c
	E14a
	E14b
	s2B
	E15
	E16
	F1
	E17
	E18
	E19
	E20
	E21
	E22a
	E22b
	E22c
	E22d
	E23
	E24
	E25a
	E25b
	E25c
	E26a
	E26b
	E26c
	s2B
	E27
	E28
	E29
	E30
	E31
	s2C
	E32
	E33
	E34
	E35a
	E35b
	E36
	E37
	E38
	s3
	E39
	E40
	E41
	E42
	E43
	E44
	E45
	E46
	s3A
	E47
	E48
	E49
	s3A
	E50
	s3B
	s3B1
	E51a
	E51b
	E51c
	E51d
	E52
	E53
	E54
	E55
	F2
	E56
	E57
	E58
	E59
	E60
	E61
	E62
	s3B2
	E63
	E64
	E65
	E66
	E67
	E68
	E69
	E70
	E71
	E72
	E73
	E74
	F3
	F4
	s4
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25

